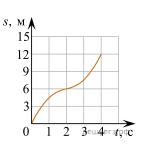
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


1. Абитуриент провел поиск информации в сети Интернет о наиболее скоростных военных самолетах в мире. Результаты поиска представлены в таблице.

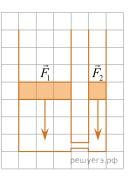
№	Название самолёта	Максимальная скорость		
1	МиГ-31	3000 км/ч		
2	F-111	44,2 км/мин		
3	SR-71	9,80 · 10 ⁴ см/с		
4	Cy-24	$2,45 \cdot 10^3$ км/ч		
5	F-15	736 м/с		

Самый скоростной самолет указан в строке таблицы, номер которой:

- 1) 1
- 2) 2 3) 3
- 4) 4 5) 5
- **2.** Звуковой сигнал, посланный эхолокатором в момент времени t_1 =0 с, отразился от препятствия, возвратился обратно в момент времени $t_2 = 3.42$ с. Если модуль скорости распространения звука в воздухе v = 340 м/с, то расстояние L от локатора до препятствия равно:
 - 1) 100 м
- 2) 224 м
 - 3) 475 м
- 4) 581 m 5) 649 m

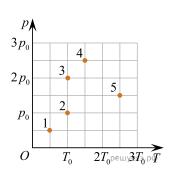
3. На рисунке приведён график зависимости пути *s*, пройденного телом при прямолинейном движении с постоянным ускорением, от времени t. Модуль ускорения a тела равен:

- 1) 2 m/c^2 ; 2) 3 m/c^2 ; 3) 4 m/c^2 ; 4) 5 m/c^2 ; 5) 6 m/c^2 .

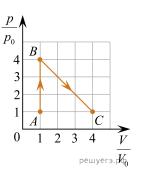

- **4.** Плотность вещества камня массы m = 20 кг составляет $\rho_1 = 2.5 \cdot 10^3$ кг/м³. Чтобы удержать камень в воде ($\rho_2 = 1.0 \cdot 10^3 \,\mathrm{kr/m}^3$), необходимо приложить силу, модуль F которой равен:

- 1) 0,30 кН 2) 0,24 кН 3) 0,20 кН 4) 0,12 кН 5) 0.10 кН
- 5. Пять вагонов, сцепленных друг с другом и движущихся со скоростью, модуль которой $v_0 = 3,5 \; rac{M}{c},$ столкнулись с двумя неподвижными вагонами. Если массы всех вагонов одинаковы, то после срабатывания автосцепки модуль их скорости и будет равен:

1) 1,0
$$\frac{M}{c}$$

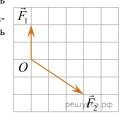

- 1) $1,0 \frac{M}{C}$ 2) $1,5 \frac{M}{C}$ 3) $2,0 \frac{M}{C}$ 4) $2,5 \frac{M}{C}$ 5) $3,0 \frac{M}{C}$

- 6. Два соединенных между собой вертикальных цилиндра заполнены несжимаемой жидкостью и закрыты невесомыми поршнями, которые могут перемещаться без трения. К поршням приложены силы \vec{F}_1 и \vec{F}_2 , направления которых указаны на рисунке. Если модуль силы $F_2=3$ H, то для удержания системы в равновесии модуль силы F_1 должен быть равен:



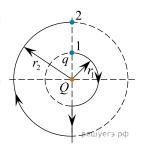
- 1) 3 H 2) 9 H
- 3) 13 H
- 4) 19 H
- 5) 27 H

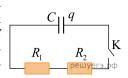
7. На p - T диаграмме изображены различные состояния идеального газа. Состояние с наибольшей концентрацией $n_{\rm max}$ молекул газа обозначено цифрой:


- 1) 1 2) 2
- 3)3
- - 5)5
- 8. При изохорном нагревании идеального газа, количество вещества которого постоянно, давление газа изменилось от $p_1 = 130 \text{ к}\Pi \text{а до } p_2 = 140 \text{ к}\Pi \text{а}$. Если начальная температура газа $T_1 = 325 \text{ K}$, то конечная температура T_2 газа равна:
 - 1) 330 K
- 2) 350 K
- 3) 390 K
- 4) 400 K
- 5) 420 K
- 9. Идеальный одноатомный газ, количество вещества которого постоянно, переводят из состояния A в состояние C (см. рис.). Значения внутренней энергии U газа в состояниях A, B, C связаны соотношением:

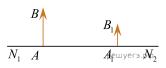
- 1) $U_A > U_B > U_C$ 2) $U_B > U_A > U_C$ 3) $U_B = U_C > U_A$ 4) $U_B > U_C > U_A$ 5) $U_A = U_C > U_B$
- 10. Установите соответствие между прибором и физической величиной, которую он измеряет:

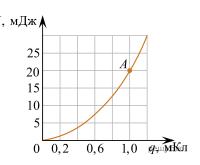
А. Барометр	1) электрический заряд		
Б. Электрометр	2) мощность тока		
	3) атмосферное давление		


- 1) A153 2) A253
- 3) A251
- 4) A351
- 5) A3₆2
- 11. Тело движется равноускоренно в положительном направлении оси Ох. В момент начала отсчёта времени $t_0 = 0$ с проекция скорости тела $v_{0x} = 4.0$ м/с. Если проекция ускорения тела на ось $a_r = 4.0 \text{ м/c}^2$, то проекция перемещения Δr_r тела за шестую секунду равна ... м.
- **12.** На покоящуюся материальную точку O начинают действовать лве силы \vec{F}_1 и \vec{F}_2 (см. рис.), причём молуль первой силы $F_1 = 6$ H. Материальная точка останется в состоянии покоя, если к ней приложить третью силу, модуль которой F_3 равен ... **H**.


- **13.** Однородная льдина $\left(\rho_1 = 900 \; \frac{\mathrm{K}\Gamma}{\mathrm{M}^3} \right)$ в форме прямоугольного параллелепипеда с площадью основания $S=1,0~{\rm M}^2$ и толщиной $h=34~{\rm cM}$ плавает в воде $\left(\rho_2=1000~{{\rm K}\Gamma\over{{\rm M}^3}}\right)$. На льдину положили камень $\left({{
 ho }_{3}}=2200\ {{{\rm K\Gamma }}\over{{{\rm M}^{3}}}} \right).$ Если камень погрузился в воду на половину своего объёма, а льдина погрузилась в воду полностью, то объём V камня равен ... дм³
- **14.** На невесомой нерастяжимой нити длиной l = 72 см висит небольшой шар массой M =52 г. Пуля массой m = 8 г. летяшая горизонтально со скоростью $\vec{\mathcal{D}}_0$, попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости υ₀ пули, равном ...м/с
- 15. При абсолютной температуре T = 290 K в сосуде находится газовая смесь, состоящая из водорода, количество вещества которого $\upsilon_1 = 1,5$ моль, и кислорода, количество вещества которого $\upsilon_2 = 0.60$ моль. Если давление газовой смеси p = 126 кПа, то объем V сосуда равен ... л.
- **16.** Значения плотности ρ_{tt} насыщенного водяного пара при различных температурах t представлены в таблице. Если в одном кубическом метре комнатного воздуха при температуре $t_0 = 20$ °C содержится m = 11,2 г водяного пара, то чему равна относительная влажность φ воздуха в комнате? Ответ приведите в процентах...

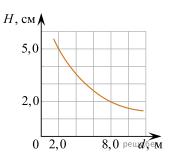
t, °C	16	17	18	19	20
$\rho_{H}, r/m^3$	13,6	14,5	15,4	16,3	17,3


- **17.** Идеальный одноатомный газ, количество вещества v которого оставалось постоянным, при изобарном нагревании получил количество теплоты Q=12 кДж при этом объем газа увеличился в k=1,2 раза. Если начальная температура газа $t_1=15\,^{\circ}C$, то количество вещества v равно ... моль.
- **18.** На оси Ox в точке с координатой x_0 находится неподвижный точечный заряд. К нему приближается другой точечный заряд, движущийся вдоль оси Ox. Если при изменении координаты движущегося заряда от $x_1 = 95$ мм до $x_2 = 55$ мм модуль силы взаимодействия зарядов изменился от $F_1 = 3.0$ мкН до $F_2 = 27$ мкН, то чему равна координата x_0 неподвижного заряда? Ответ приведите в миллиметрах.
- 19. На рисунке изображены концентрические окружности радиусами r_1 и r_2 , в центре которых находится неподвижный точечный заряд Q. Точечный заряд q=1,5 нКл перемещали из точки 1 в точку 2 по траектории, показанной на рисунке сплошной жирной линией. Если радиусы окружностей $r_1=2,1$ см и $r_2=4,2$ см, а работа, совершённая электростатическим полем заряда Q, равна Q=1,1,2,3,3,40 равна Q=1,2,3,41 в мкДж, то величина заряда Q=1,3,4,42 равна ... нКл.


- **20.** Две частицы массами $m_1=m_2=0,400\cdot 10^{-12}~{\rm kr}$, заряды которых $q_1=q_2=1,00\cdot 10^{-10}~{\rm K}$ л, движутся в вакууме в однородном магнитном поле, индукция B которого перпендикулярна их скоростям. Расстояние $l=100~{\rm cm}$ между частицами остаётся постоянным. Модули скоростей частиц $\upsilon_1=\upsilon_2=25,0~\frac{{\rm m}}{c},$ а их направления противоположны в любой момент времени. Если пренебречь влиянием магнитного поля, создаваемого частицами, то модуль магнитной индукции B поля равен ... мТл.
- **21.** К источнику переменного напряжения, напряжение на клеммах которого изменяется по гармоническому закону, подключена электрическая плитка, потребляющая мощность $P=350~{\rm Bt}$. Если действующее значение силы тока в цепи $I_{\rm д}=9,0~{\rm A}$, то амплитудное значение напряжения U_0 на плитке равно ... **В**.
- **22.** На рисунке представлена схема электрической цепи, состоящей из конденсатора, ключа и двух резисторов, сопротивления которых $R_1=1$ МОм и $R_2=2$ МОм. Если электрическая емкость конденсатора C=1 н Φ , а его заряд q=6 мкКл, то количество теплоты Q_1 которое выделится в резисторе R_1 при полной разрядке конденсатора после замыкания ключа K, равно ... м $\mathbf{Д}$ ж.

23. Стрелка AB высотой H=4,0 см и её изображение A_1B_1 высотой h=2,0 см, формируемое тонкой линзой, перпендикулярны главной оптической оси N_1N_2 линзы (см. рис.). Если расстояние между стрелкой и её изображением $AA_1=16$ см, то модуль фокусного расстояния |F| линзы равен ... см.

24. График зависимости энергии электростатического поля W конденсатора от его заряда q представлен на рисунке. Точке A на графике соответствует напряжение U на конденсаторе, равное ... В. 25


- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.
- 27. Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью \vec{v} . Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F_c}=-\beta\vec{v}$, где $\beta=1,25$ $\frac{\text{H}\cdot\text{c}}{\text{M}}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости v движения электроскутера равен ... $\frac{\text{M}}{c}$.
- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6\ \frac{\mathrm{M}}{\mathrm{C}}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_\Pi=6,4\cdot 10^{-15}\ \mathrm{H}$, то модуль индукции B магнитного поля равен ... мТл.

29. В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4$ $\frac{\mathrm{pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мкФ.

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

